The Future Of *Staphylococcus aureus* Bacteremia And Endocarditis: From Biofilm Eradication To Artificial Intelligence

Vance G. Fowler, Jr, MD, MHS

Disclosures

Nature of Relevant Financial Relationship	Commercial Interest
Grant or research support	Cerexa/Actavis, Pfizer, Advanced Liquid Logics, NIH, MedImmune, Cubist/Merck; Karius; Contrafect; Genentech; Regeneron
Paid consultant	Achaogen, Astellas, Arsanis; Affinergy; Basilea; Bayer; Cerexa, Contrafect; Cubist;Debiopharm, Destiny; Genentech/Roche; Integrated Biotherapeutics; MedImmune; Novartis, Theravance; Brii, Affinivax, Armata, ArcBio, Akagera, Aridis, Synermore,Zymeron
Speaker's Bureau	None
Employment	Duke University
Stock options	ArcBio, Valanbio
Other relevant financial interests	Patent pending in sepsis diagnostic, Predigen, Inc.
Royalties	UptoDate
Honoraria	IDSA for Assoc. Editor role, Clinical Infectious Diseases

S. aureus Bacteremia and IE

• Where were we?

• Where are we?

• Where are we going?

S. aureus Bacteremia and IE

• Where were we?

• Where are we?

• Where are we going?

Fifteen Years' Experience with Staphylococcus Septicemia in a Large City Hospital^{*}

Analysis of Fifty-five Cases in the Cincinnati General Hospital 1940 to 1954

RODMAN WILSON, M.D. and MORTON HAMBURGER, M.D.

Cincinnati, Ohio AMERICAN JOURNAL OF MEDICINE MARCH, 1957

TABLE I

INCIDENCE, INCIDENCE OF ENDOCARDITIS AND MORTALITY RATE OF STAPHYLOCOCCAL SEPTICEMIA AT THE CINCINNATI GENERAL HOSPITAL, 1940-1954

Year	Cases	Cases of Endocarditis	Deaths	
1940*	2	1	2	
1941	3	1	2	
1942	5	4	2 5	
1943	3	3	3	
1944	7	4	4	
1945	0			
1946	1	0	1	
1947	2	2	2	
1948	3	, 1	t	
1949	4	2	2	
1950	6	4	4	
1951	8	6	7	
1952	3	1	2	
1953	5	5	2	
1954	3	1	2	
Totals	55	35 (64%)	39 (71%)	
* Incomplete year				

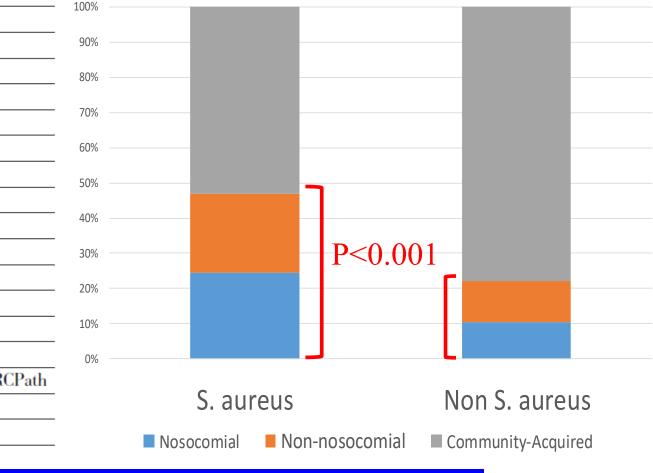
CLINICAL PROGRESS

Staphylococcal Bacteremia and Endocarditis

By RICHARD H. MEADE, III, M.D.

TABLE	: 1.—	Origins	of	Staphylococcal	l Bact	eremia
Years			(R	936-1942 eferences 2, 29, 40)	(Ref 2,	2-1957 erences 18, 21, , 41, 42)
Number	of ca	ses		238	2	58
Predispo	\mathbf{sing}	factors	No	. %	No.	%
1. Infe	etion					
Skin	~~~~		91	38.2	37	14.3
	irator	y tract	25	10.5	17	6.6
Mast		•	_3	1.3	- 1	1.2
Bone			40	16.8	6	2.4
Urina	ary t	ract	15	6.3	13	5.0
Genit	tal tra	act	7	2.9	17	6.6
Bowe	el		1	0.4	6	2.4
Teetl	ı		3	1.2	8	3.2
Lym	ph no	de	1	0.4	1	0.4
Joint	s		1	0.4	1	0.4
Vein	3					
Ca	nnula		1	0.4	3	1.2
Dr	ug ad	ldiction			2	0.8
Se	ptic p	hlebitis			2	0.8
cor	operat nplica rface					
inf	ection	ı	15	6.3	7	2.8
Resp	irator	y tract			5	2.0
_		nary tra	et		7	2.8
Prost	tate	Ţ			31	12.0
Bone			4	1.6	6	2.4
	ral ne stem	rvous			1	0.4
3. Unde	termi	ned	31	13.0	36	14.0
assoc	iated					10.0
otner	disea				47	18.2

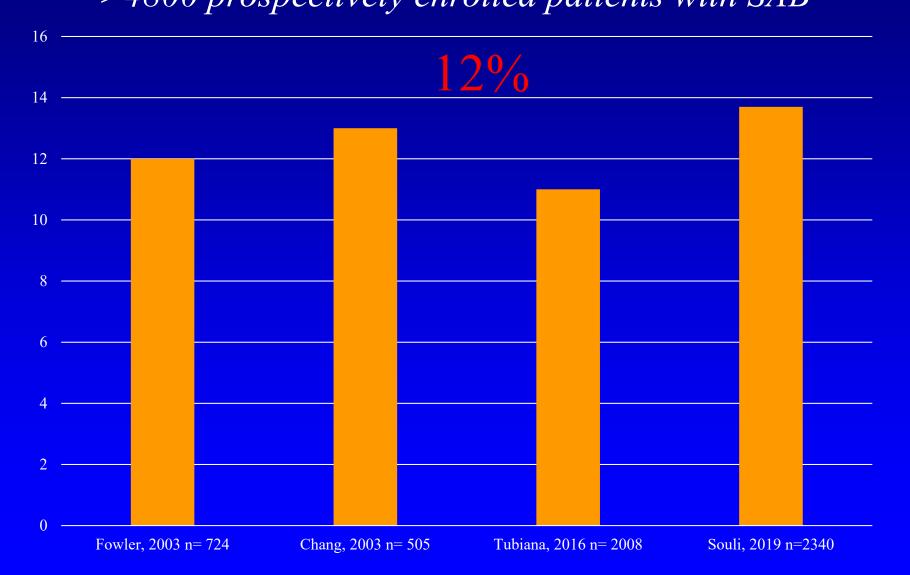
S. aureus Bacteremia and IE

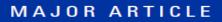

• Where were we?

• Where are we?

• Where are we going?

Staphylococcus aureus Endocarditis A Consequence of Medical Progress


S. aureus IE is Healthcare-Associated

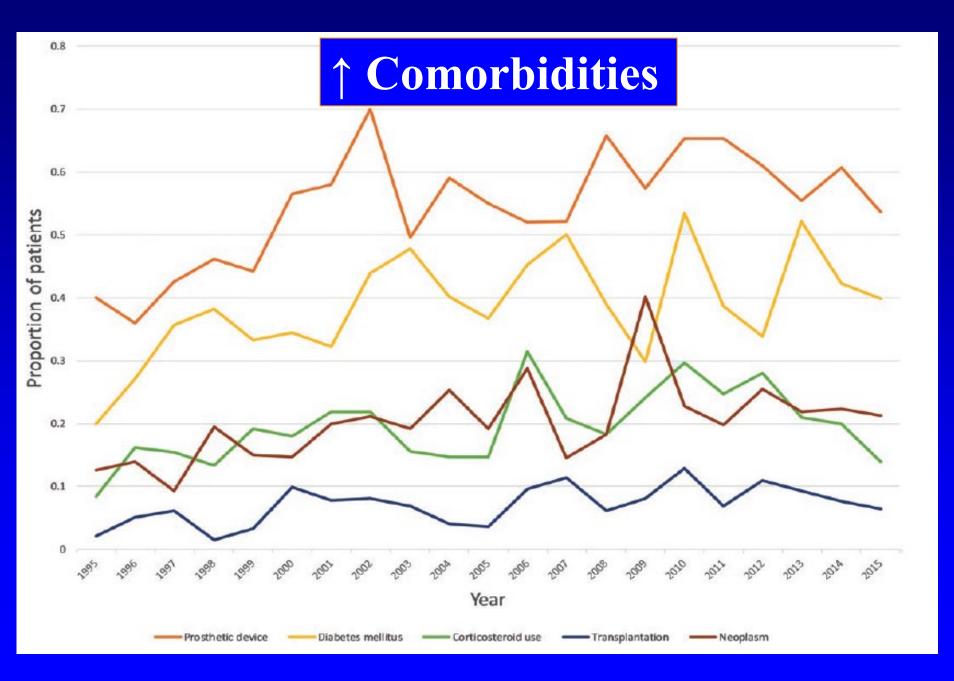


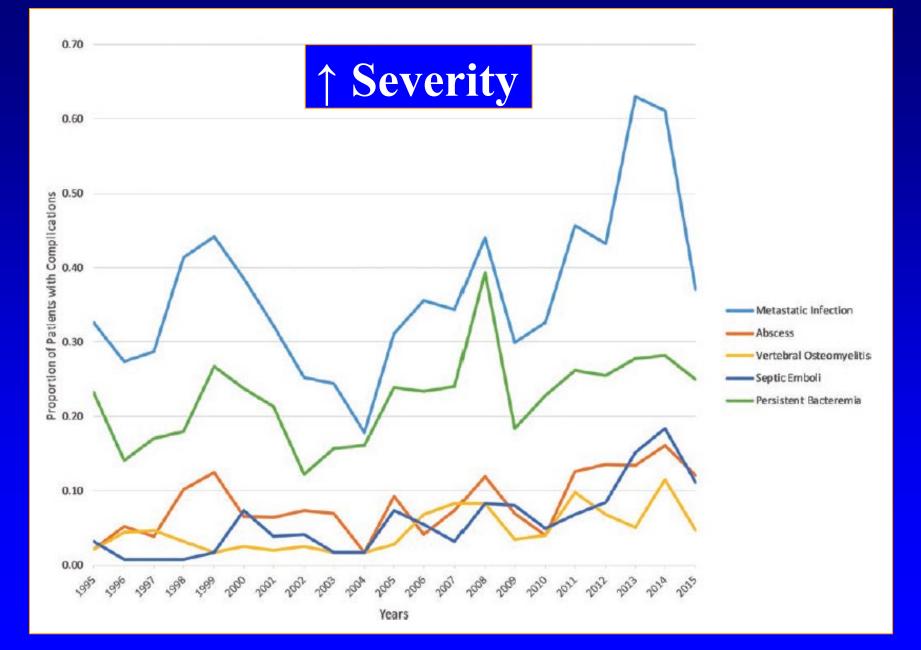
JAMA. 2005:293:3012-3021.

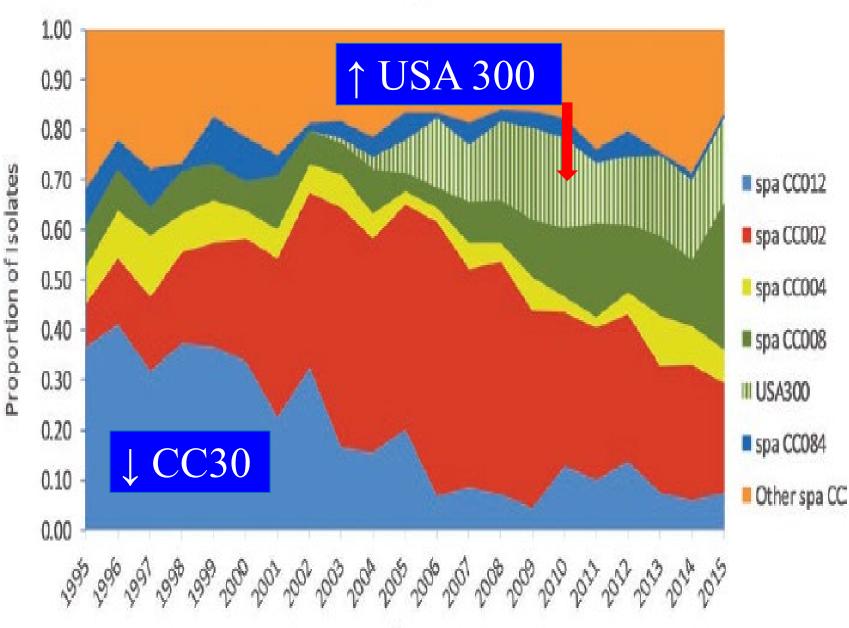
Vance G. Fowler, Jr. MD, MHS Jose M. Miro, MD, PhD Bruno Hoen, MD, PhD Christopher H. Cabell, MD, MHS Elias Abrutyn, MD Ethan Rubinstein, MD, LLb G. Ralph Corey, MD Denis Spelman, MD Suzanne F. Bradley, MD Bruno Barsic, MD, PhD Paul A. Pappas, MS Kevin J. Anstrom, PhD Dannah Wray, MD Claudio Q. Fortes, MD Ignasi Anguera, MD Eugene Athan, MD Philip Jones, MD Jan T. M. van der Meer, MD Tom S. J. Elliott, PhD, DSc FRCPath Donald P. Levine, MD Arnold S. Bayer, MD for the ICE Investigators

Risk of Endocarditis in Patients with SAB? >4800 prospectively enrolled patients with SAB

Changing Characteristics of *Staphylococcus aureus* Bacteremia: Results From a 21-Year, Prospective, Longitudinal Study

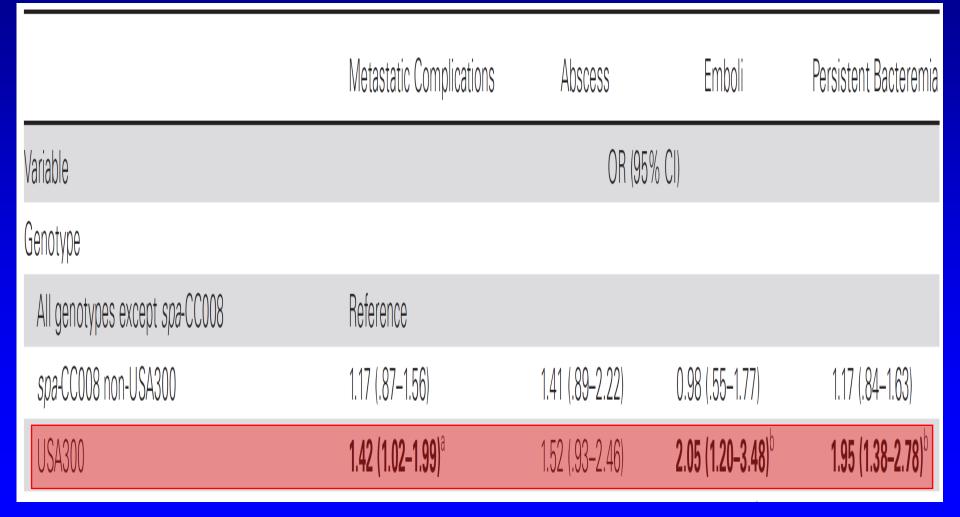

Maria Souli,^{1,2,3} Felicia Ruffin,¹ Seong-Ho Choi,^{1,4} Lawrence P. Park,^{1,5} Shengli Gao,^{1,6} Nicholas Christopoulos Lent,¹ Batu K. Sharma-Kuinkel,¹ Joshua T. Thaden,¹ Stacey A. Maskarinec,¹ Lisa Wanda,^{1,7} Jonathan Hill-Rorie,^{1,8} Bobby Warren,¹ Brenda Hansen,^{1,9} and Vance G. Fowler Jr^{1,2}

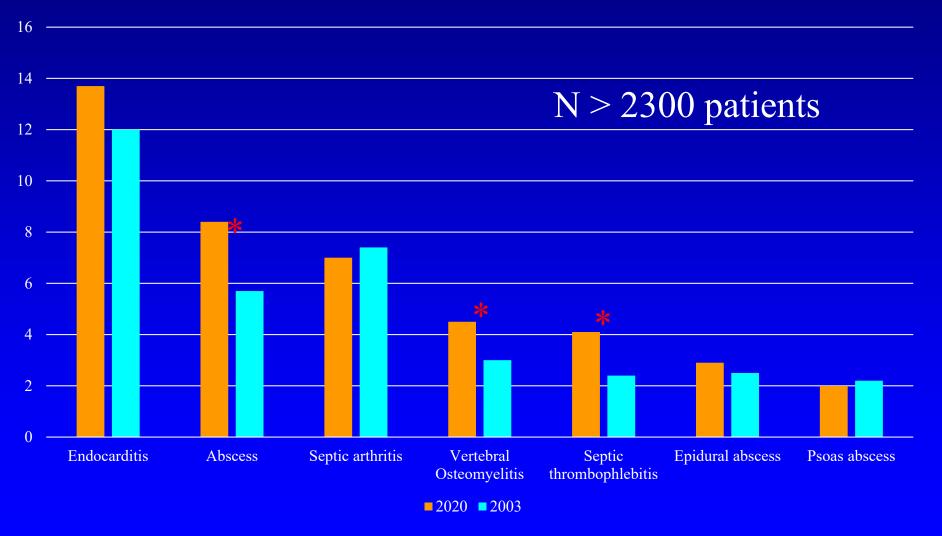

¹Department of Medicine, Duke University Medical Center and ²Duke Clinical Research Institute, Durham, North Carolina; ³Fourth Department of Internal Medicine, National and Kapodistrian University of Athens School of Medicine, Greece; ⁴Department of Internal Medicine, Division of Infectious Diseases, Chung-Ang University College of Medicine, Seoul, South Korea; ⁵Duke Global Health Institute, Duke University, Durham, North Carolina; ⁶The First People's Hospital of Wujiang District, Suzhou City, Jiangsu Province, China; ⁷School of Medicine, University of North Carolina, Chapel Hill; ⁸Harvard T. H. Chan School of Public Health, Boston, Massachusetts; and ⁹Pediatric Gastroenterology, University of North Carolina, Chapel Hill.


Clinical Infectious Diseases[®] 201

2019;69(11):1868-77

- ~2400 Prospectively enrolled patients with SAB at Duke
- Continuous enrollment 1994-2015
- *Spa* typing on all 2400 isolates
- Three questions:
 - 1) Did clinical phenotype of SAB change over study period?
 - 2) Did bacterial genotype of SAB change over study period?
 - *3) Are clinical phenotype and bacterial genotype related?*




13

Year

USA300 Associated with Increased Severity of Infection

Risk of Abscess, but not Endocarditis, Increased in Patients with SAB in Past 2 Decades

* p < 0.01 overall trend

Clinical Infectious Diseases[®] 2019;69(11):1868–77

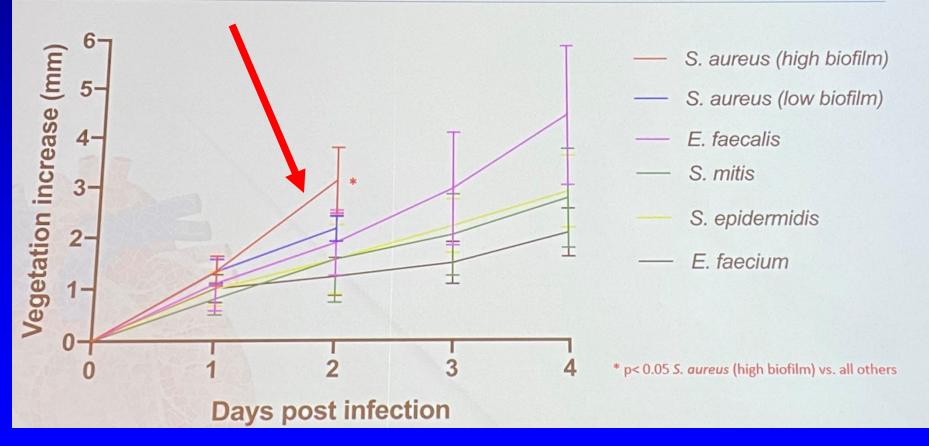
S. aureus Clonal Variation is Associated with Endocarditis

Category, clonal complex	lsolates, no.	Nasal carriage only	Uncomplicated infection	Bacteremia with hematogenous complications	Pª
Both MRSA and MS (n = 371)	SA				
1	32	12 (38)	11 (34)	9 (28)	.1763
5	84	21 (25)	13 (15)	50 (60)	.0025
8	44	16 (36)	15 (34)	13 (30)	.1612
9	11	2 (18)	1 (9)	8 (73)	.0764
15	20	10 (50)	7 (35)	3 (15)	.0146
30	96	22 (23)	27 (28)	47 (49)	.0308
45	31	11 (35)	8 (26)	12 (39)	.6431
59	11	4 (36)	3 (28)	4 (36)	.6917
All not common	42	18 (43)	17 (40)	7 (17)	NA
Total	371	116 (31)	102 (28)	153 (41)	
			Fowler et a	1. J Infect Dis 2007	; 196:738-
Clonal	Infective	<u>a</u>	Soft		
complex,	endocardi		tissue		P
no. (%)	(n = 113)		infection (n =		value
CC1	7 (6.2)		10 (8.8))	.615
CC5	14 (12.4	9	6 (5.3))	.099
CC8	9 (8)		16 (14.3	2)	.203
CC15	15 (13.3	3)	10 (8.8)		.397
CC30	22 (19.5	5)	7 (6.2))	.005
CC45	16 (14.2	2)	25 (22.	1)	.167
Other	30 (26.5	-	39 (34.9	-	.248

Nienaber et al. *J Infect Dis* **2011**; 204:704-13.

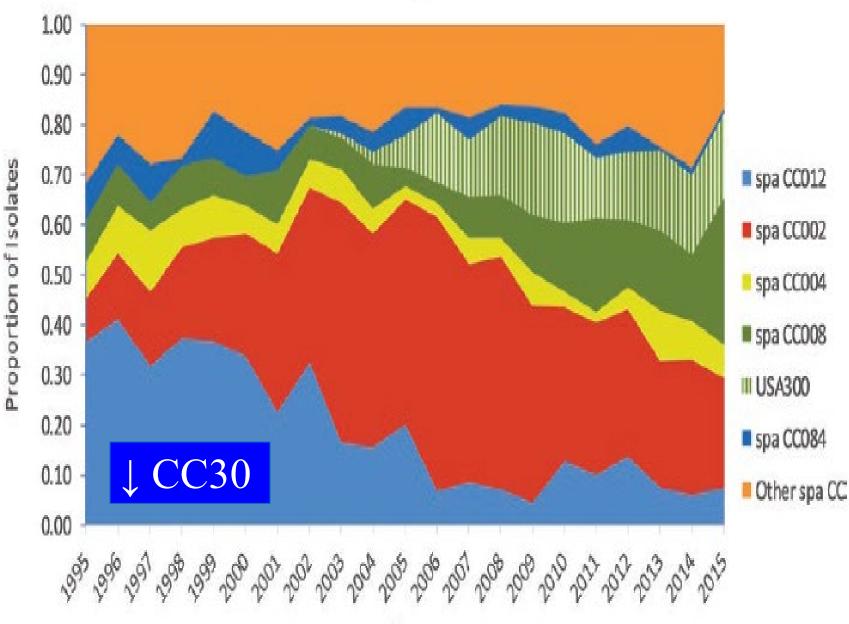
Comparison of *Staphylococcus aureus* strains for ability to cause infective endocarditis and lethal sepsis in rabbits

Adam R. Spaulding¹, Erin A. Satterwhite², Ying-Chi Lin³, Olivia N. Chuang-Smith⁴, Kristi L. Frank⁴, Joseph A. Merriman¹, Matthew M. Schaefers³, Jeremy M. Yarwood⁵, Marnie L. Peterson³ and Patrick M. Schlievert^{1*}


	IE	Sepsis
USA 200 (CC30)	+++	+
USA300 (CC8)	+	+++
USA (400)	+++	+++

Frontiers in Cellular and Infection Microbiology 2012; 2, 18: 1-9

CC30 Distinct IE Phenotype


RESULTS II Natural history

RGELONA JUNE 18TH - 20TH

Presented with permission from A Dahl

🖚 🛸 16TH SYMPOSIUMISCVID

13

Year

Home | about | submit | nevvs & notes | alerts / rss | channels

Search

Q

Advanced Search

bioRxiv posts many COVID19-related papers. A reminder: they have not been formally peer-reviewed and should not guide health-related behavior or be reported in the press as conclusive.

New Results

Follow this preprint

All *Staphylococcus aureus* bacteraemia strains have the potential to cause infective endocarditis: results of GWAS and experimental animal studies

Sylvère Bastien, Severien Meyers, Wilmara Salgado-Pabón, 🕩 Stefano Giulieri, Jean-Phillipe Rasigade, Laurens Liesenborghs, 🕩 Kyle J. Kinney, Florence Couzon, Patricia Martins-Simoes, Vincent Le Moing, Xavier Duval, Natasha E Holmes, Niels Eske Bruun, Robert Skov, Benjamin P Howden, Vance G. Fowler Jr., Peter Verhamme, Paal Skytt Andersen, Coralie Bouchiat, Karen Moreau, François Vandenesch

doi: https://doi.org/10.1101/2022.05.16.491111

• GWAS Bloodstream Isolate (IE= 274, SAB= 650)

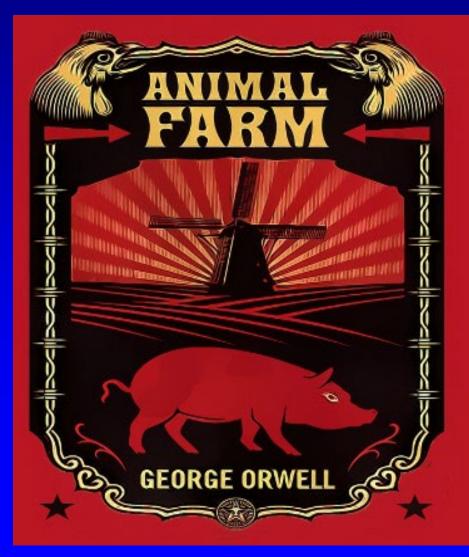
- No difference by SNP, coding sequence, k-mer

• 2 *in vivo* endocarditis models (mouse, rabbit)

- No difference in valve adhesion, propensity to cause IE, vegetation size or CFU.

Summary: SAB & IE 1) Patients changed: ↑ comorbidities > ½ have prosthetic device

2) Severity changed:


Metastatic infection

3) Bacteria changed:

 ↑ USA300 causing Bacteremia
 ↑ metastatic infection asstd with ↑ USA300

4) Bacterial Genotype and endocarditis...

S. aureus Genotype and IE

GG ALL ANIMALS ARE EQUAL BUT SOME ANIMALS ARE MORE EQUAL THAN OTHERS.

GEORGE ORWELL

S. aureus Bacteremia and IE

• Where were we?

• Where are we?

• Where are we going?

Future of S. aureus Bacteremia & IE

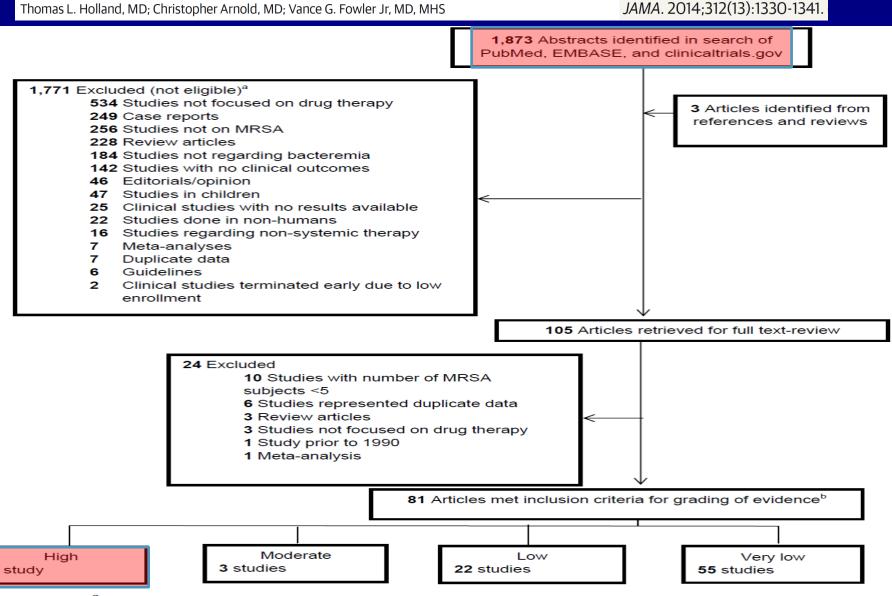
Clinical Trials

Diagnostics

Biofilm

Machine Learning

Future of S. aureus Bacteremia & IE

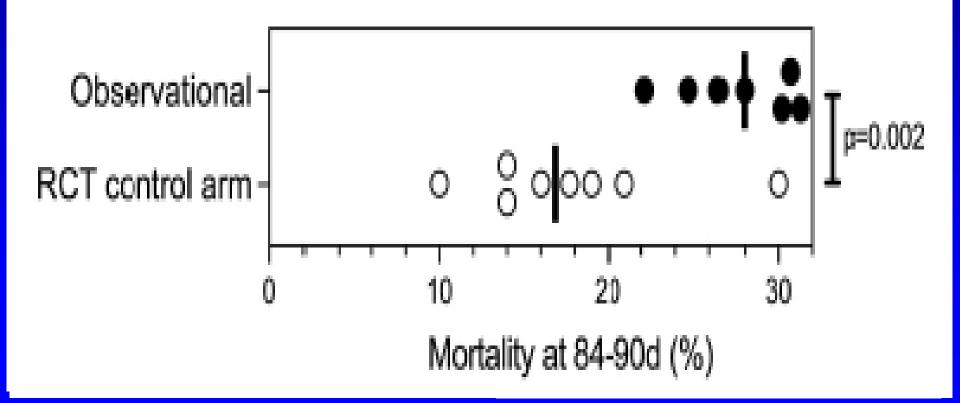

Clinical Trials

Diagnostics

Biofilm

Machine Learning

Clinical Management of *Staphylococcus aureus* **Bacteremia** A Review

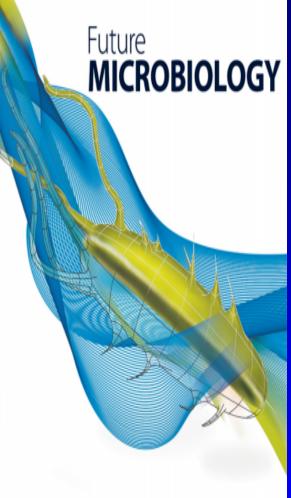

^a Many studies met more than one exclusion criterion.

^b Articles were graded using the GRADE system to assess level of evidence.

Heterogeneity In Staphylococcus aureus Bacteraemia Clinical Trials Complicates Interpretation Of Findings

Heather W. Dolby, Sarah A. Clifford, Ian F. Laurenson, Vance G. Fowler, Jr., Clark D. Russell

C SAB RCT and observational cohort mortality



Journal of Infectious Diseases 2022 May 27; jiac219. doi: 10.1093/infdis/jiac219. Online ahead of

Clinical Trial Protocol

For reprint orders, please contact: reprints@futuremedicine.com

Ceftobiprole versus daptomycin in Staphylococcus aureus bacteremia: a novel protocol for a double-blind, Phase III trial

Kamal Hamed^{*,1}, Marc Engelhardt¹, Mark E Jones¹, Mikael Saulay¹, Thomas L Holland², Harald Seifert^{3,4} & Vance G Fowler Jr²

Bacteriophage for *SAB/IE* "S. aureus" AND "Bacteriophage"

U.S. National Library of Medicine NIH

ClinicalTrials.gov

Saved Studies

Clear Saved Studies List

Saved

 \checkmark

Row

1

Status Study Title Conditions Interventions Not yet Phage Therapy in Prosthetic Joint Infection Due Infection of · Biological: Antirecruiting to Staphylococcus Aureus Treated With DAIR. Total Hip Joint Staphylococcus NEW Prosthesis aureus Bacteriophages Infection of Total Knee Joint Prosthesis

 \checkmark 2 Recruiting Study Evaluating Safety, Tolerability, and Efficacy Bacteremia Biological: AP-SA02 ٠ of Intravenous AP-SA02 in Subjects With S. Staphylococcus Other: Placebo Aureus Bacteremia Aureus Staphylococcus Aureus Bacteremia (and 2 more...)

Courtesy Sarah Cantrell, MLIS

Show/Hide Columns

Download

NATURE MICROBIOLOGY | VOL 5 | MARCH 2020 | 465-472 |

There are amendments to this paper

Safety of bacteriophage therapy in severe *Staphylococcus aureus* infection

Aleksandra Petrovic Fabijan^{1,2,6}, Ruby C. Y. Lin^{1,2,3,4,6}, Josephine Ho^{1,2}, Susan Maddocks^{1,2,3}, Nouri L. Ben Zakour^{1,3}, Jonathan R. Iredell^{1,2,3 *} and Westmead Bacteriophage Therapy Team⁵

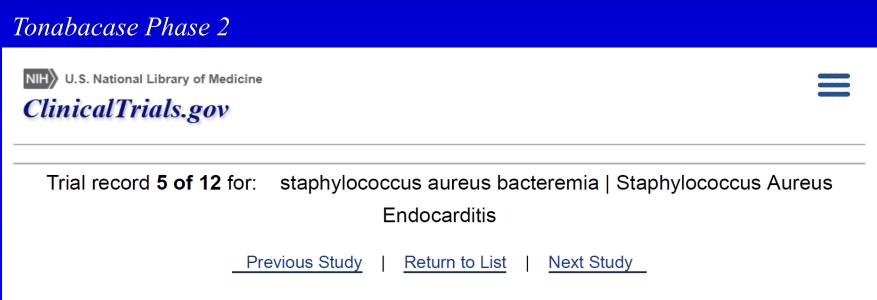
- 13 patients with 2 consecutive days of SAB
- - 6 Definite IE (4 PVE)
- Adjunctive Bacteriophage 10⁹ q 12h dosing.
- 6/13 (46%) died by D90
- 1 pre-therapy isolate was Resistant to phage
- Well tolerated

Exebacase for patients with *Staphylococcus aureus* bloodstream infection and endocarditis

Vance G. Fowler Jr.,^{1,2} Anita F. Das,³ Joy Lipka-Diamond,⁴ Raymond Schuch,⁵ Roger Pomerantz,⁵ Luis Jáuregui-Peredo,⁶ Adam Bressler,⁷ David Evans,⁸ Gregory J. Moran,⁹ Mark E. Rupp,¹⁰ Robert Wise,¹¹ G. Ralph Corey,¹ Marcus Zervos,¹² Pamela S. Douglas,^{1,2} and Cara Cassino⁵ *J Clin Invest.* 2020. https://doi.org/10.1172/JCI136577.

Other Clinical Trials of Lysins for S. aureus

Exebecase Phase 3

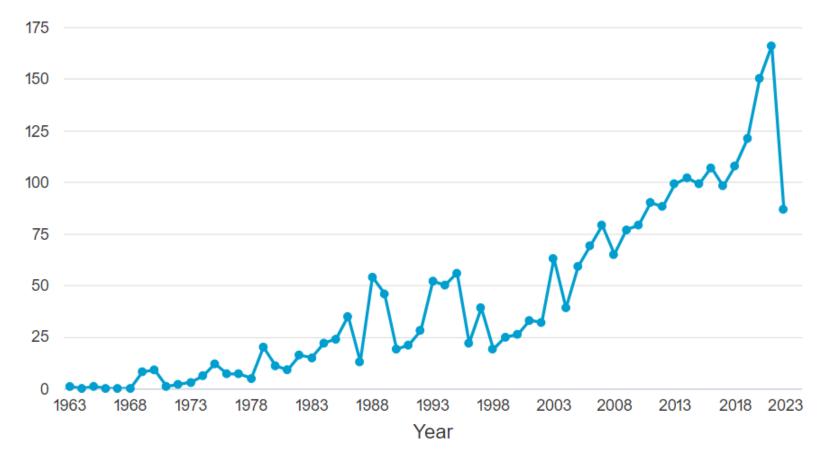

NIH U.S. National Library of Medicine

ClinicalTrials.gov

Trial record **1 of 1** for: Exebacase | Phase 3

Previous Study | Return to List | Next Study

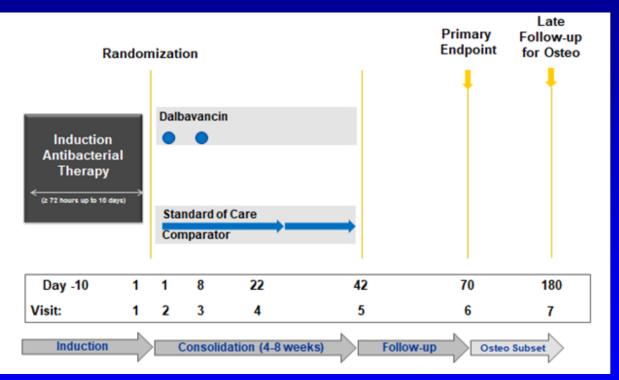
Direct Lysis of Staph Aureus Resistant Pathogen Trial of Exebacase (DISRUPT)


ERAdicate S. Aureus in Patients With Bacteremia and Endocarditis (ERASE)

Strategy Trials for *SAB/IE*

(oral antibiotics OR antibiotic duration OR combination therapy).

Documents by year


Documents

Courtesy Sarah Cantrell, MLIS

Dalbavancin as an Option for Treatment of *S. aureus* Bacteremia

- Multicenter, randomized, open-label, assessor-blinded study of dalbavancin vs standard of care for completion of treatment in complicated *S. aureus* bacteremia
- **Primary outcome**: superiority by Desirability of Outcome Ranking (DOOR)
- Secondary outcome: non-inferiority by clinical response

ClinicalTrials.gov

RODEO-1

Trial record 44 of 128 for: Endocarditis

Previous Study | Return to List | Next Study

Oral Switch During Treatment of Left-sided Endocarditis Due to Multi-susceptible Staphylococcus

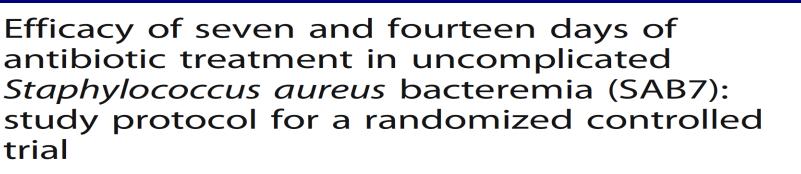
- Nationwide, noninferiority, open-label RCT
- Patients with Left-sided multi-susceptible staphylococcus having received at least 10d IV therapy
- Randomized between D 10 and D 28 after starting IV abx or undergoing surgery to standard IV abx or PO Levofloxacin and Rifampin
- Stratified on valve replacement surgery

ClinicalTrials.gov

Trial record 3 of 128 for: Endocarditis

Previous Study | Return to List | Next Study

Accelerated Treatment of Endocarditis (POET II)

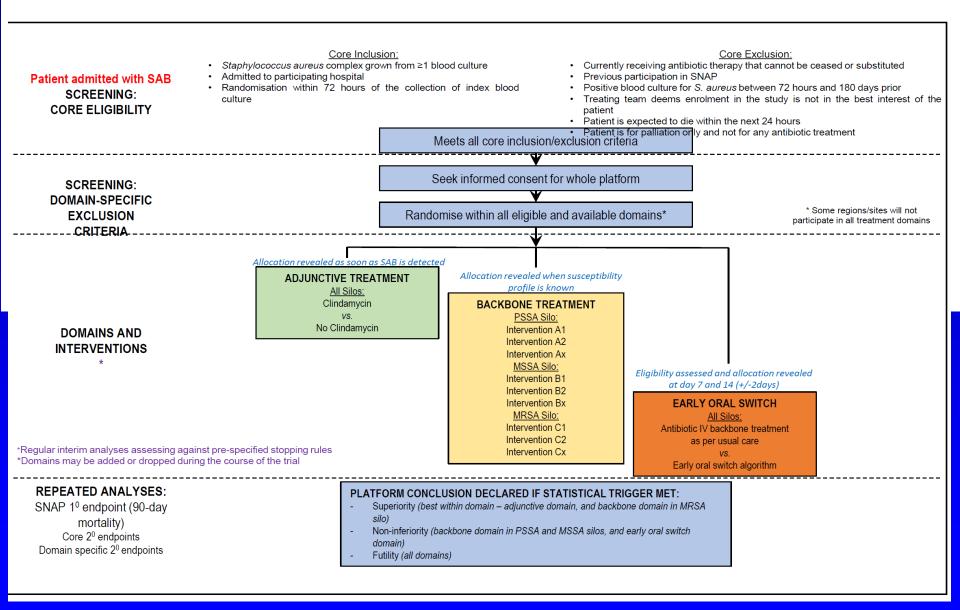

- Nationwide, noninferiority, open-label RCT
- Patients with Definite IE due to Streptococci, *Enterococcus faecalis*, or *Staphylococcus aureus*
- $n \sim 750$ (200 patients with IE due to each type of bacteria)
- Abbreviated therapy vs. standard antibiotic duration
- *Primary endpoint:* Death, Embolism, recurrent bacteremia, or unplanned surgery

Protocol update for the SABATO trial: a randomized controlled trial to assess early oral switch therapy in low-risk *Staphylococcus aureus* bloodstream infection

Achim J. Kaasch^{1,2*}, Anna Rommerskirchen¹, Martin Hellmich³, Gerd Fätkenheuer^{4,5}, Reinhild Prinz-Langenohl⁶, Siegbert Rieg⁷, Winfried V. Kern⁷, Harald Seifert^{5,8}, for the SABATO trial group Kaasch *et al. Trials* (2020) 21:175

updates

- Randomized, parallel-group, observer-blinded, clinical non-inferiority trial
- Low-risk patient
- 5-7d IV + either 7d IV or 7d PO = 14d total duration
- Status: Presented ECCMID 2022


Louise Thorlacius-Ussing^{1*}, Christian Østergaard Andersen², Niels Frimodt-Møller³, Inge Jenny Dahl Knudsen², Jens Lundgren⁴ and Thomas Lars Benfield¹

Inducion evitoria	Evolucion critoria
Inclusion criteria	Exclusion criteria
• Age > 18 years	 Persistence of S. aureus bacteremia before randomization (S. aureus positive follow-up blood culture obtained within 48–120 h of the first positive blood culture)
Blood culture positive for Staphylococcus aureus	Polymicrobial infection
 Antibiotic treatment with antimicrobial activity to S. aureus administrated within 12 h of the first positive blood culture 	 Antibiotic treatment with no antimicrobial activity to S. aureus administered more than 12 h after the first positive blood culture
 Temperature < 37,5 °C at randomization 	 Endocarditis or other intracardiac infection demonstrated with transthoracic or transesophageal echocardiography
 S. aureus negative follow-up blood culture obtained 48–120 h after microbiologically verified SAB 	Previous history of endocarditis
Patients written consent obtained	Pacemaker or other intracardiac implant
	 Failure to remove a likely focus of infection, such as central venous catheter, within 72 h of the first positive blood culture
	• Vascular grafts
	 Pneumonia or infection involving bone, joints, or prosthetics
	Previous bone/joint infection
	S. aureus infection within the last 90 days
	Pregnancy or breastfeeding
	• Neutropenia (blood neutrophils $< 1.0 \times 10^9$ /l)
	Untreated cancer
	Chemotherapy within 90 days.

Check for

Home About Us For Participants Site Information Registry Information Publications Blog Contact

<u>snap@snaptrial.net</u>

Quality of Life: Does Shorter or Oral Therapy Matter for Patients with *S. aureus* bacteremia? It didn't in OVIVA by European Quality of Life-5 *Li et al. N Engl J Med* 2019;380:425-36.

	Day 14	Day 42	Day 120	Day 365
Treatment effect for the EQ-5D index PO vs. IV*	-0.003 (-0.052, 0.046), P=0.92	0.005 (-0.057, 0.066), P=0.88	-0.032 (-0.1, 0.035), P=0.35	-0.014 (-0.065, 0.038), P=0.61
N	596	631	554	533
Treatment effect for the EQ-5D VAS PO vs. IV*	0.206 (-3.243, 3.656), P=0.91	2.069 (-1.293, 5.431), P=0.23	-1.64 (-6.082, 2.801), P=0.47	-1.527 (-5.617, 2.562), P=0.46
N	571	610	533	514

Patients' Experiences With *Staphylococcus aureus* and Gram-negative Bacterial Bloodstream Infections: A Qualitative Descriptive Study and Concept Elicitation Phase To Inform Measurement of Patient-reported Quality of Life

Heather A. King,^{1,2,3} Sarah B. Doernberg,⁴ Julie Miller,¹ Kiran Grover,¹ Megan Oakes,¹ Felicia Ruffin,⁵ Sarah Gonzales,¹ Abigail Rader,⁶ Michael J. Neuss,⁷ Hayden B. Bosworth,^{1,2} Zoë Sund,⁸ Caitlin Drennan,⁹ Jonathan M. Hill-Rorie,¹⁰ Pratik Shah,¹¹ Laura Winn,¹ Vance G. Fowler Jr,^{5,8} and Thomas L. Holland^{5,8}; on behalf of the Antibacterial Resistance Leadership Group

SUMMARY: Future Clinical Trials in SAB & IE • Current clinical trials data: inadequate or unavailable

- New antibiotics: Rare
- Adjunct agents: several potential candidates
- Strategy trials: Abundant
- Clinical trials networks: primarily strategy trials
- **Patient QOL:** *increasingly included*

Future of S. aureus Bacteremia & IE

Clinical Trials

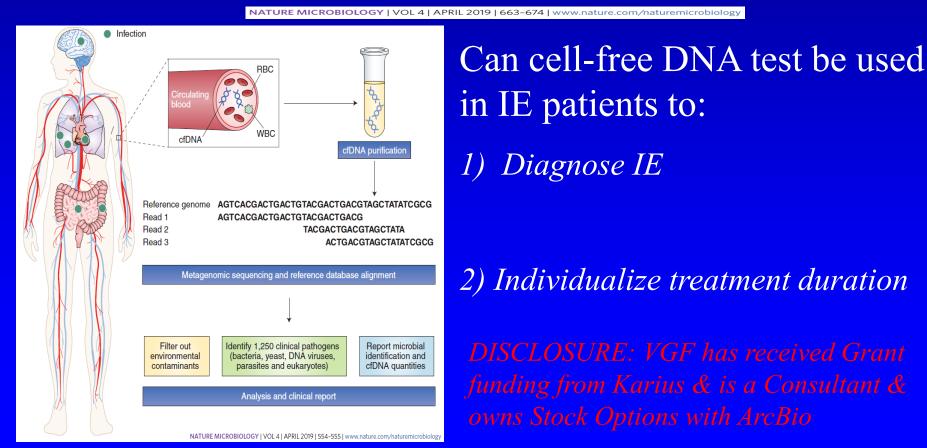
Diagnostics

Biofilm

Machine Learning

Prediction Rules for Ruling Out Endocarditis in Patients With *Staphylococcus aureus* Bacteremia

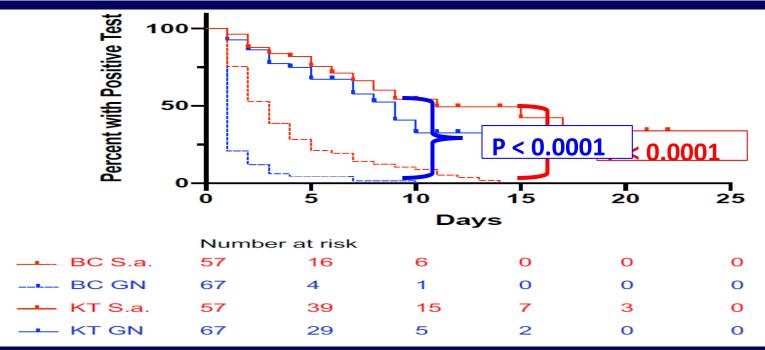
Thomas W. van der Vaart,^{1,2,©} Jan M. Prins,² Robin Soetekouw,³ Gitte van Twillert,⁴ Jan Veenstra,⁵ Bjorn L. Herpers,⁶ Wouter Rozemeijer,⁷ Rogier R. Jansen,⁸ Marc J. M. Bonten,^{1,9} and Jan T. M. van der Meer² Clinical Infectious Diseases[®] 2022;74(8):1442–9


Table 3. Diagnostic Accuracies of POSITVE, PREDICT, and VIRSTA Scores

Score	Sensitivity (% + 95% CI)	Specificity (% + 95% CI)	Negative Predictive Value (% + 95% CI)	Positive Predictive Value (% + 95% CI)	AUC
POSITIVEª	77.6 (65.8–86.9)	63.1 (57.3–68.6)	92.5 (87.9–95.8)	32.3 (25.1–40.1)	77.8 (71.9–83.7)
PREDICT day 1	22.9 (14.6–33.5)	97.4 (95.3–98.8)	85.0 (81.4-88.2)	66.7 (47.2-82.7)	71.4 (65.2–77.5)
PREDICT day 5	85.1 (75.8–91.8)	56.9 (51.8–61.9)	94.5 (90.7–97.0)	30.5 (24.7–36.8)	79.7 (73.9–85.4)
VIRSTA	98.9 (95.7–100)	35.7 (30.8–40.6)	99.3 (94.9–100)	25.5 (20.7–30.3)	88.9 (85.3–92.5)

Next Generation Diagnostics & Endocarditis

Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease


Timothy A. Blauwkamp^{1,3*}, Simone Thair^{2,3}, Michael J. Rosen¹, Lily Blair¹, Martin S. Lindner¹, Igor D. Vilfan¹, Trupti Kawli¹, Fred C. Christians¹, Shivkumar Venkatasubrahmanyam¹, Gregory D. Wall¹, Anita Cheung¹, Zoë N. Rogers¹, Galit Meshulam-Simon¹, Liza Huijse¹, Sanjeev Balakrishnan¹, James V. Quinn², Desiree Hollemon¹, David K. Hong¹, Marla Lay Vaughn¹, Mickey Kertesz¹, Sivan Bercovici¹, Judith C. Wilber^{1,3} and Samuel Yang^{2,3}

1) Diagnose IE

Microbial Cell-Free DNA Identifies Etiology of Bloodstream Infections, Persists Longer Than Conventional Blood Cultures, and Its Duration of Detection Is Associated With Metastatic Infection in Patients With *Staphylococcus aureus* and Gram-Negative Bacteremia

Emily M. Eichenberger,¹ Christiaan R. de Vries,² Felicia Ruffin,¹ Batu Sharma-Kuinkel,¹ Lawrence Park,¹ David Hong,² Erick R. Scott,² Lily Blair,² Nicholas Degner,² Desiree H. Hollemon,² Timothy A. Blauwkamp,² Carine Ho,² Hon Seng,² Pratik Shah,³ Lisa Wanda,^{4,5} Vance G. Fowler Jr,¹ and Asim A. Ahmed²

Clinical Infectious Diseases®

2) Individualize Treatment Duration

Clinical Infectious Diseases

MAJOR ARTICLE

OXFORD

Microbial Cell-Free DNA Identifies the Causative Pathogen in Infective Endocarditis and Remains Detectable Longer Than Conventional Blood Culture in Patients with Prior Antibiotic Therapy

Emily M. <mark>Eichenberger,^{1,©} Nicholas Degner,² Erick R. Scott,² Felicia Ruffin,¹ John <mark>Franzone</mark>,¹ Batu <mark>Sharma-Kuinkel,¹ Pratik Shah,¹ David Hong</mark>,² Sudeb C. <mark>Dalai</mark>,² Lily <mark>Blair</mark>,² Desiree Hollemon,² Eliza Chang,² Carine Ho,² Lisa Wanda,¹ Christiaan de Vries,² Vance G. FowlerJr,^{1,©} and Asim A. Ahmed²</mark>

Valve Surgery \downarrow mcf-DNA in IE Patients

Could mcf-DNA individualize therapy?

NEGATIVE: Stop antibiotics

Convert to oral antibiotics

POSITIVE: Search for additional Source

Clin Infect Dis. 2022 Jun 10;ciac426. doi: 10.1093/cid/ciac426. Online ahead of print.

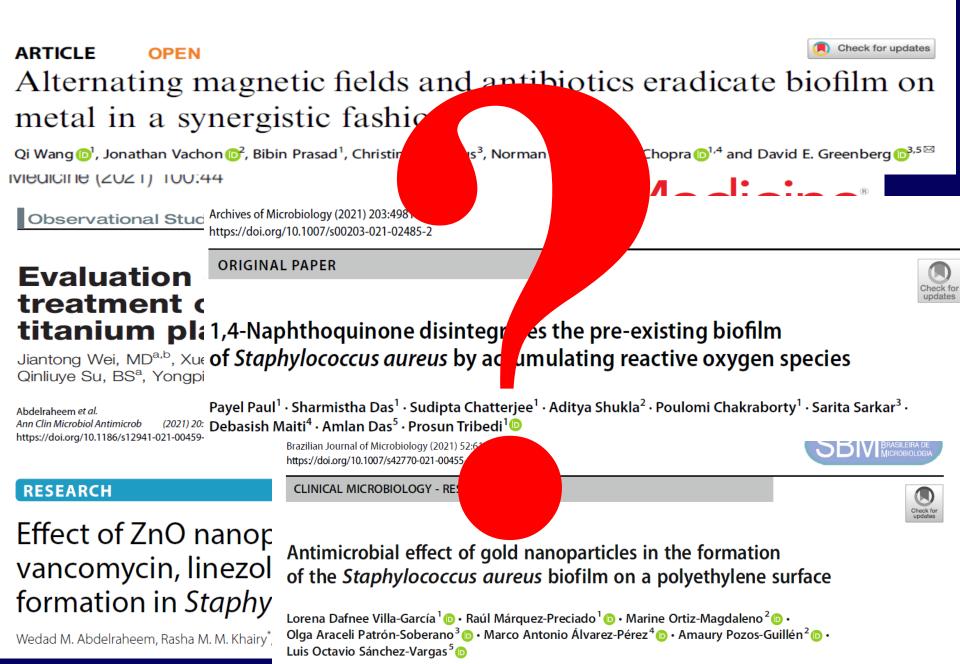
A Prognostic Model of Persistent Bacteremia and Mortality in Complicated *Staphylococcus aureus* Bloodstream Infection

Alessander O. Guimaraes,^{1,a} Yi Cao,^{1,a} Kyu Hong,¹ Oleg Mayba,¹ Melicent C. Peck,¹ Johnny Gutierrez,¹ Felicia Ruffin,² Montserrat Carrasco-Triguero,¹ Jason B. Dinoso,¹ Angelo Clemenzi-Allen,³ Catherine A. Koss,³ Stacey A. Maskarinec,² Henry F. Chambers,³ Vance G. Fowler Jr,² Amos Baruch,¹ and Carrie M. Rosenberger^{1,©}

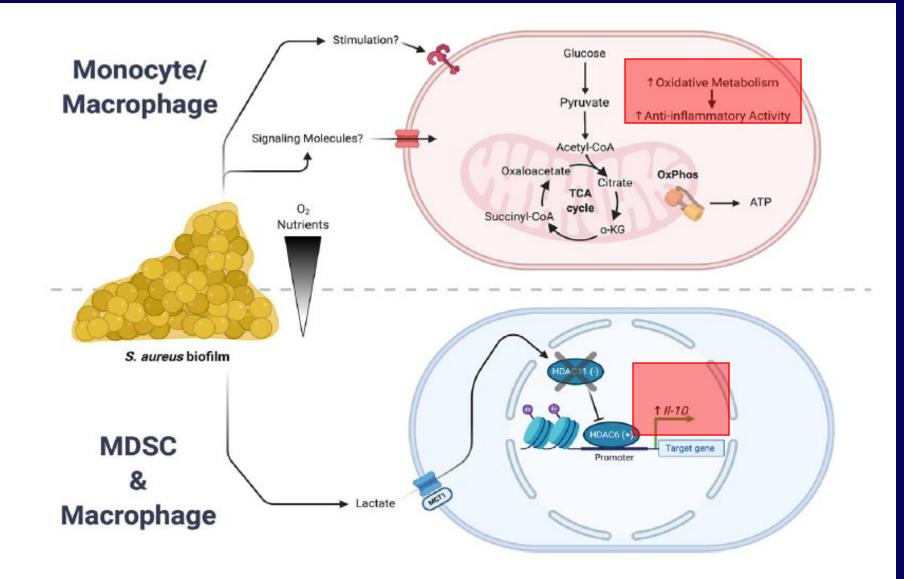
ROC AUC P Value IL-17A 0.731 <0.001 IL-10 0.675 0.001 sE-selectin 0.658 0.002 IL-1RN 0.624 0.018 sIL2RA 0.622 0.02 IL-27 0.617 0.026 IL-6 0.612 0.032 LCN2 0.612 0.033
IL-10 0.675 0.001 sE-selectin 0.658 0.002 IL-1RN 0.624 0.018 sIL2RA 0.622 0.02 IL-27 0.617 0.026 IL-6 0.612 0.032
sE-selectin 0.658 0.002 IL-1RN 0.624 0.018 slL2RA 0.622 0.02 IL-27 0.617 0.026 IL-6 0.612 0.032
$\begin{aligned} \mathbf{IL} - 27 &= 0.617 & 0.026 \\ \mathbf{IL} - 6 &= 0.612 & 0.032 \\ \mathbf{LCN2} &= 0.612 & 0.033 \end{aligned}$
IL-27 0.617 0.026 IL-6 0.612 0.032 LCN2 0.612 0.033
IL-27 0.617 0.026 IL-6 0.612 0.032
IL-6 0.612 0.032
LCN2 0.612 0.033

Clinical Infectious Diseases[®] 2019;68(9):1502–11

Human DNA methylation signatures differentiate persistent from resolving MRSA bacteremia


Yu-Ling Chang^a[®], Maura Rossetti^a, David W. Gjertson^{a,b}, Liudmilla Rubbi^c, Michael Thompson^c[®], Dennis J. Montoya^d[®], Marco Morselli^c[®], Felicia Ruffin^e, Alexander Hoffmann^f[®], Matteo Pellegrini^c[®], Vance G. Fowler Jr^{e,1}[®], Michael R. Yeaman^{g,h,i,j,1}, Elaine F. Reed^{a,1,2}, and with the MRSA Systems Immunology Group³

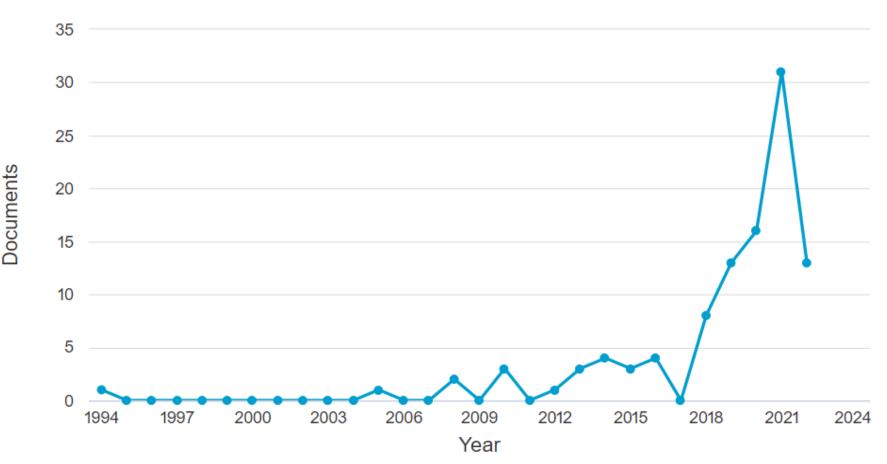
- Distinct DNA methylome signature in patients with Persistent and Resolving MRSA bacteremia
- Persistent SAB: \methylation in CCAAT enhancer binding protein B & signal transducer/activator of transcription (STAT1)
- *Resolving SAB:* \methylation glucocorticoid receptor & histone acetyltransferase p300 site
- Mean AUC 0.85; validated by targeted bisulfite sequencing


SUMMARY: Future Diagnostics in SAB & IE

- **Today:** *TEE* with $VIRSTA \ge 3$
- Eventually: Individualize diagnosis & treatment mcf-DNA (?) Serological Biomarkers (?) Host epigenetic signatures (?)

Biofilm

S. aureus Biofilm Metabolites \downarrow Inflammation


Yamada PLOS Pathogen 2020; 16(3): e1008354.

SUMMARY: Biofilm, *S. aureus*, and the Future

The problem of biofilm-based infection will not be overcome until we understand how the bacteria avoids local host immune response Machine Learning

Machine Learning for SAB/IE "S. aureus" AND "Artificial Intelligence" OR "Machine Learning"

Documents by year

Courtesy Sarah Cantrell, MLIS

Direct antimicrobial resistance prediction from clinical MALDI-TOF mass spectra using machine learning NATURE MEDICINE | VOL 28 | JANUARY 2022 | 164-174 | www.nature.com/naturemedicine

Caroline Weis^[1,2], Aline Cuénod^{3,4}, Bastian Rieck^{[0,1,2}, Olivier Dubuis⁵, Susanne Graf⁶, Claudia Lang⁵, Michael Oberle⁷, Maximilian Brackmann^[0,8], Kirstine K. Søgaard^{3,4}, Michael Osthoff^{9,10}, Karsten Borgwardt^[0,1,2,11], and Adrian Egli^[0,3,4,11]

- Machine learning to predict AMR from MALDI-TOF Mass Spectra profiles of clinical isolates
- Trained & Validated on >300,000 mass spectra with > 750,000 AMR Phenotypes
- Receiver Operating Curves: S. aureus: 0.80
 Escherichia coli & Klebsiella pneumoniae: 0.74
- *MALDI-TOF Mass Spectra based Machine learning may thus be an important new tool for treatment optimization*
- My take: Necessary but Insufficient for IE

Original Investigation | Critical Care Medicine

Development and Validation of a Machine Learning Model to Estimate Bacterial Sepsis Among Immunocompromised Recipients of Stem Cell Transplant

Margaret L. Lind, MPH; Stephen J. Mooney, PhD; Marco Carone, PhD; Benjamin M. Althouse, PhD; Catherine Liu, MD; Laura E. Evans, MD; Kevin Patel, MD; Phuong T. Vo, MD; Steven A. Pergam, MD, MPH; Amanda I. Phipps, PhD, MPH JAMA Network Open. 2021;4(4):e214514. doi:10.1001/jamanetworkopen.2021.4514

- Create a full risk factor & clinic factor-specific automated sepsis decision tool using electronic medical record
- 1943 Stem cell transplant patients divided 70:30 into modeling & validation
- *Primary outcome:* High sepsis risk bacteremia (Gramnegative, *S. aureus*, Streptococcus)
- *Result: Full decision support tool* had Highest AUC (0.85: 0.81-0.89) for high sepsis-risk Bacteremia: overall, inpatients, outpatients, and 10-day and 28-day mortality
- Full decision tool had superior prognostic accuracy for high-risk sepsis bacteremia and mortality

SUMMARY: Future of Machine Learning in SAB

- Today: Unproven promise
- Eventually: Differentiate high risk SAB vs. lowrisk SAB ?

Where are We Going? S. aureus Bacteremia/IE Epidemiology & Microbiology: Healthcare & IDU, ^^ Devices, New Clones

Clinical Trials:

Test existing antibiotics >> Approve new antibiotics

Diagnostics:

New tools to differentiate Uncomplicated and Complicated SAB

Biofilm:

Better understanding of host immunology

Machine Learning: Promising but unproven

